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8. Regression basics
Regression analysis, like most multivariate statistics, allows you to infer that there is a relationship between two 

or more variables. These relationships are seldom exact because there is variation caused by many variables, not  

just the variables being studied.

If you say that students who study more make better grades, you are really hypothesizing that there is a positive  

relationship between one variable, studying, and another variable, grades. You could then complete your inference 

and test your hypothesis  by gathering a sample of (amount studied, grades) data from some students and use 

regression to see if the relationship in the sample is strong enough to safely infer that there is a relationship in the  

population. Notice that even if students who study more make better grades, the relationship in the population 

would not be perfect; the same amount of studying will not result in the same grades for every student (or for one  

student every time). Some students are taking harder courses, like chemistry or statistics, some are smarter, some 

will study effectively, some will get lucky and find that the professor has asked them exactly what they understood 

best. For each level of amount studied, there will be a distribution of grades. If there is a relationship between  

studying and grades, the location of that distribution of grades will change in an orderly manner as you move from 

lower to higher levels of studying.

Regression analysis is one of the most used and most powerful multivariate statistical techniques for it infers the 

existence and form of a functional relationship in a population. Once you learn how to use regression you will be  

able to estimate the parameters—the slope and intercept—of the function which links two or more variables. With 

that estimated function, you will be able to infer or forecast things like unit costs, interest rates, or sales over a wide  

range of conditions. Though the simplest regression techniques seem limited in their applications, statisticians have  

developed a number of  variations on regression which greatly expand the usefulness  of  the technique.  In  this 

chapter, the basics will be discussed. In later chapters a few of the variations on, and problems with, regression will  

be covered. Once again, the t-distribution and F-distribution will be used to test hypotheses.

What is regression? 

Before starting to learn about regression, go back to algebra and review what a function is. The definition of a  

function can be formal, like the one in my freshman calculus text: "A function is a set of ordered pairs of numbers 

(x,y) such that to each value of the first variable (x) there corresponds a unique value of the second variable (y)". 3 

More intuitively, if there is a regular relationship between two variables, there is usually a function that describes 

the relationship. Functions are written in a number of forms. The most general is "y = f(x)", which simply says that  

the value of y depends on the value of x in some regular fashion, though the form of the relationship is not specified.  

The simplest functional form is the linear function where

3  George B. Thomas, Calculus and Analytical Geometry, 3rd ed., Addison-Wesley, 1960.
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α and β are parameters, remaining constant as x and y change. α is the intercept and β is the slope. If the values of 

and are known, you can find the y that goes with any x by putting the x into the equation and solving. There can be  

functions where one variable depends on the values of two or more other variables:

where x1 and x 2 together determine the value of y. There can also be non-linear functions, where the value of 

the dependent variable ("y" in all of the examples we have used so far) depends on the values of one or more other  

variables, but the values of the other variables are squared, or taken to some other power or root or multiplied 

together, before the value of the dependent variable is determined. Regression allows you to estimate directly the 

parameters in linear functions only, though there are tricks which allow many non-linear functional forms to be 

estimated indirectly.  Regression also allows you to test  to see if  there is  a functional relationship between the  

variables, by testing the hypothesis that each of the slopes has a value of zero.

First, let us consider the simple case of a two variable function. You believe that y, the dependent variable, is a 

linear function of x, the independent variable—y depends on x. Collect a sample of (x, y) pairs, and plot them on a 

set of x, y axes. The basic idea behind regression is to find the equation of the straight line that "comes as close as  

possible to as many of the points as possible". The parameters of the line drawn through the sample are unbiased 

estimators of the parameters of the line that would "come as close as possible to as many of the point as possible" in  

the population, if the population had been gathered and plotted. In keeping with the convention of using Greek  

letters for population values and Roman letters for sample values, the line drawn through a population is

while the line drawn through a sample is

y = a + bx.

In most cases, even if the whole population had been gathered, the regression line would not go through every 

point. Most of the phenomena that business researchers deal with are not perfectly deterministic, so no function  

will perfectly predict or explain every observation.

Imagine that you wanted to study household use of laundry soap. You decide to estimate soap use as a function  

of family size. If you collected a large sample of (family size, soap use) pairs you would find that different families of  

the same size use different amounts of laundry soap—there is a distribution of soap use at each family size. When 

you use regression to estimate the parameters of soap use = f(family size), you are estimating the parameters of the 

line that connects the mean soap use at each family size. Because the best that can be expected is to predict the 

mean soap use for a certain size family, researchers often write their regression models with an extra term, the  

"error term", which notes that many of the members of the population of (family size, soap use) pairs will not have  

exactly the predicted soap use because many of the points do not lie directly on the regression line. The error term 

is usually denoted as "ε", or "epsilon", and you often see regression equations written

Strictly, the distribution of ε at each family size must be normal, and the distributions of ε for all of the family sizes 

must have the same variance (this is known as homoskedasticity to statisticians).
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It is common to use regression to estimate the form of a function which has more than one independent, or  

explanatory, variable. If household soap use depends on household income as well as family size, then soap use =  

f(family size, income), or

where  y  is  soap  use,  x1  is  family  size  and  x 2  is  income.  This  is  the  equation  for  a  plane,  the  three-

dimensional equivalent of a straight line. It is still a linear function because neither of the x's nor y is raised to a 

power nor taken to some root nor are the x's multiplied together. You can have even more independent variables,  

and as long as the function is linear, you can estimate the slope, β, for each independent variable.

Testing your regression: does y really depend upon x?

Understanding  that  there  is  a  distribution  of  y  (soap  use)  values  at  each  x  (family  size)  is  the  key  for 

understanding how regression results from a sample can be used to test the hypothesis that there is (or is not) a 

relationship between x and y. When you hypothesize that y = f(x), you hypothesize that the slope of the line ( β in 

y= x ) is not equal to zero. If  β was equal to zero, changes in x would not cause any change in y.  

Choosing a sample of families, and finding each family's size and soap use, gives you a sample of (x, y). Finding the 

equation of the line that best fits the sample will give you a sample intercept, α, and a sample slope, β. These sample 

statistics are unbiased estimators of the population intercept, α, and slope, β. If another sample of the same size is 

taken another sample equation could be generated. If many samples are taken, a sampling distribution of sample  

β's, the slopes of the sample lines, will be generated. Statisticians know that this sampling distribution of b's will be 

normal with a mean equal to β, the population slope. Because the standard deviation of this sampling distribution is  

seldom known, statisticians developed a method to estimate it from a single sample. With this estimated sb , a t-

statistic for each sample can be computed:

where n = sample size

m = number of explanatory (x) variables

b = sample slope

β= population slope

sb  = estimated standard deviation of b's, often called the "standard error".

These t's follow the t-distribution in the tables with n-m-1 df.

Computing  sb  is tedious, and is almost always left to a computer, especially when there is more than one 

explanatory variable. The estimate is based on how much the sample points vary from the regression line. If the 

points in the sample are not very close to the sample regression line, it seems reasonable that the population points 

are also widely scattered around the population regression line and different samples could easily produce lines  

with quite varied slopes. Though there are other factors involved, in general when the points in the sample are 

farther from the regression line sb  is greater. Rather than learn how to compute sb , it is more useful for you 
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to learn how to find it on the regression results that you get from statistical software. It is often called the "standard 

error" and there is one for each independent variable. The printout in Exhibit 19 is typical.

Variable DF Parameter Std Error t-score

Intercept 1 27.01 4.07 6.64

TtB 1 -3.75 1.54 -2.43

Exhibit 19: Typical statistical package output for regression

You will need these standard errors in order to test to see if y depends upon x or not. You want to test to see if  

the slope of the line in the population, β, is equal to zero or not. If the slope equals zero, then changes in x do not  

result in any change in y. Formally, for each independent variable, you will have a test of the hypotheses:

H a : ≠0

if the t-score is large (either negative or positive), then the sample b is far from zero (the hypothesized  β), and 

H a : should be accepted. Substitute zero for b into the t-score equation, and if the t-score is small, b is close 

enough to zero to accept H o :. To find out what t-value separates "close to zero" from "far from zero", choose an 

α,  find  the  degrees  of  freedom,  and  use  a  t-table  to  find  the  critical  value  of  t.  Remember  to  halve  α when 

conducting a two-tail test like this. The degrees of freedom equal n - m -1, where n is the size of the sample and m is  

the number of independent x variables. There is a separate hypothesis test for each independent variable. This 

means you test to see if y is a function of each x separately. You can also test to see if β> 0 (or β< 0) rather than 

simply if ≠0 by using a one-tail test, or test to see if his some particular value by substituting that value for β 

when computing the sample t-score.

Casper Gains has noticed that various stock market newsletters and services often recommend stocks by rating if  

this is a good time to buy that stock. Cap is cynical and thinks that by the time a newsletter is published with such a  

recommendation the smart investors will already have bought the stocks that are timely buys, driving the price up. 

To test to see if he is right or not, Cap collects a sample of the price-earnings ratio (P/E) and the "time to buy" 

rating (TtB) for 27 stocks. P/E measures the value of a stock relative to the profitability of the firm. Many investors  

search for stocks with P/E's that are lower than would be expected, so a high P/E probably means that the smart  

investors have discovered the stock. He decides to estimate the functional relationship between P/E and TtB using  

regression. Since a TtB of 1 means "excellent time to buy", and a TtB of 4 means "terrible time to buy", Cap expects 

that the slope,  β, of the line P /E=∗TtB  will be negative. Plotting out the data gives the graph in 

Error: Reference source not found.
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Exhibit 20: A plot of Cap's stock data

Entering the data into the computer, and using the SAS statistical software Cap has at work to estimate the 

function, yields the output given above.

Because Cap Gains wants to test to see if P/E is already high by the time a low TtB rating is published, he wants  

to test to see if the slope of the line, which is estimated by the parameter for TtB, is negative or not. His hypotheses  

are:

H a : 0

He should use a one-tail t-test, because the alternative is "less than zero", not simply "not equal to zero". Using  

an =.05 , and noting that there are n-m-1, 26-1-1 = 24 degrees of freedom, Cap goes to the t-table and finds  

that he will accept H a : if the t-score for the slope of the line with respect to TtB is smaller (more negative) than  

-1.711. Since the t-score from the computer output is -2.43, Cap should accept  H a : and conclude that by the 

time the TtB rating is published, the stock price has already been bid up, raising P/E. Buying stocks only on the  

basis  of  TtB is  not  an easy way to make money quickly  in the stock market.  Cap's  cynicism seems to be well  

founded.

Both the laundry soap and Cap Gains's examples have an independent variable that is always a whole number.  

Usually,  all of the variables are continuous, and to use the hypothesis test  developed in this chapter all of the  

variables really should be continuous. The limit on the values of x in these examples is to make it easier for you to 

understand how regression works; these are not limits on using regression.
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Testing your regression. Does this equation really help predict?

Returning to the laundry soap illustration, the easiest way to predict how much laundry soap a particular family  

(or any family, for that matter) uses would be to take a sample of families, find the mean soap use of that sample,  

and use that sample mean for your prediction, no matter what the family size.  To test to see if the regression 

equation really helps, see how much of the error that would be made using the mean of all of the y's to predict is  

eliminated by using the regression equation to predict. By testing to see if the regression helps predict, you are 

testing to see if there is a functional relationship in the population.

Imagine that you have found the mean soap use for the families in a sample, and for each family you have made  

the simple  prediction that  soap use will  be  equal  to the sample mean,  y .  This  is  not  a  very  sophisticated 

prediction technique, but remember that the sample mean is an unbiased estimator of population mean, so "on 

average" you will be right. For each family, you could compute your "error" by finding the difference between your  

prediction (the sample mean, y ) and the actual amount of soap used.

As an alternative way to predict soap use, you can have a computer find the intercept,  α, and slope,  β, of the 

sample regression line. Now, you can make another prediction of how much soap each family in the sample uses by 

computing:

y= familysize 

Once again, you can find the error made for each family by finding the difference between soap use predicted 

using the regression equation, ŷ, and actual soap use, y . Finally, find how much using the regression improves 

your prediction by finding the difference between soap use predicted using the mean, y , and soap use predicted 

using regression, ŷ. Notice that the measures of these differences could be positive or negative numbers, but that 

"error" or "improvement" implies a positive distance. There are probably a few families where the error from using 

the regression is  greater  than the error  from using the mean,  but  generally the error using regression will  be 

smaller.

If you use the sample mean to predict the amount of soap each family uses, your error is   y−y  for each 

family. Squaring each error so that worries about signs are overcome, and then adding the squared errors together,  

gives you a measure of the total mistake you make if you use to predict y. Your total mistake is ∑  y−y 2 . The 

total mistake you make using the regression model would be ∑  y−y 2 . The difference between the mistakes, 

a raw measure of how much your prediction has improved, is ∑  y−y 
2 . To make this raw measure of the 

improvement meaningful, you need to compare it to one of the two measures of the total mistake. This means that  

there are two measures of "how good" your regression equation is. One compares the improvement to the mistakes 

still made with regression. The other compares the improvement to the mistakes that would be made if the mean  

was used to predict. The first is called an F-score because the sampling distribution of these measures follows the F-

distribution seen in the “F-test and one-way anova” chapter. The second is called  R2 ,  or the "coefficient of 

determination".

All of these mistakes and improvements have names, and talking about them will be easier once you know those 

names. The total mistake made using the sample mean to predict,  ∑  y−y 2 , is called the "sum of squares, 

total". The total mistake made using the regression, ∑  y−y 2 , is called the "sum of squares, residual" or the 
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"sum of squares, error". The total improvement made by using regression,  ∑  y−y 
2 is called the "sum of 

squares, regression" or "sum of squares, model". You should be able to see that:

Sum of Squares Total = Sum of Squares Regression + Sum of Squares Residual

∑  y−y 
2=∑  y−y

2∑  y−y 2

The  F-score  is  the  measure  usually  used  in  a  hypothesis  test  to  see  if  the  regression  made  a  significant 

improvement over using the mean. It is used because the sampling distribution of F-scores that it follows is printed 

in the tables at the back of most statistics books, so that it can be used for hypothesis testing. There is also a good 

set of F-tables at  http://www.itl.nist.gov/div898/handbook/eda/section3/eda3673.htm. It works no matter how 

many  explanatory  variables  are  used.  More  formally  if  there  was  a  population  of  multivariate  observations, 

 y , x1 , x2 , ... , xm , and there was no linear relationship between y and the x's, so that y ≠ f  x1 , x 2 , ... , xm

, if samples of n observations are taken, a regression equation estimated for each sample, and a statistic, F, found 

for each sample regression, then those F's will be distributed like those in the F-table with (m, n-m-1) df. That F is:

where: n is the size of the sample

 m is the number of explanatory variables (how many x's there are in the regression equation).

If, ∑  y−y 2  the sum of squares regression (the improvement), is large relative to ∑  y−y 2 , the sum 

of squares residual (the mistakes still  made), then the F-score will be large. In a population where there is no 

functional relationship between y and the x's, the regression line will have a slope of zero (it will be flat), and the ŷ 

will be close to y. As a result very few samples from such populations will have a large sum of squares regression 

and large F-scores. Because this F-score is distributed like the one in the F-tables, the tables can tell you whether  

the  F-score  a  sample  regression  equation  produces  is  large  enough  to  be  judged  unlikely  to  occur  if  y  ≠ 

f  x1 , x 2 , ... , xm . The sum of squares regression is divided by the number of explanatory variables to account 

for  the fact  that  it  always  decreases  when more variables are  added.  You can also  look  at  this  as  finding the  

improvement per  explanatory  variable.  The sum of  squares  residual  is  divided  by a  number  very  close  to the  
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number of observations because it always increases if more observations are added. You can also look at this as the 

approximate mistake per observation.

H o : y≠ f  x1 , x2 , ... xm

To test  to  see  if  a  regression  equation was worth estimating,  test  to  see  if  there  seems to be a  functional  

relationship:

H a : y= f  x1 , x2 , ... , xm

This might look like a two-tailed test since H o : has an equal sign. But, by looking at the equation for the F-

score you should be able to see that the data supports H a : only if the F-score is large. This is because the data 

supports the existence of a functional relationship if  sum of  squares regression is  large relative to the sum of 

squares residual. Since F-tables are usually one-tailed tables, choose an α, go to the F-tables for that α and (m, n-m-

1) df, and find the table F. If the computed F is greater than the table F, then the computed F is unlikely to have  

occurred  if  H o :  is  true,  and  you can  safely  decide  that  the  data  supports  H a :.  There  is  a  functional 

relationship in the population.

The other measure of how good your model is, the ratio of the improvement made using the regression to the  

mistakes made using the mean is called "R-square", usually written R2. While R2 is not used to test hypotheses, it 

has a more intuitive meaning than the F-score. R2 is found by:

The numerator is the improvement regression makes over using the mean to predict, the denominator is the 

mistakes made using the mean, so R2 simply shows what proportion of the mistakes made using the mean are 

eliminated by using regression.

Cap Gains, who in the example earlier in this chapter, was trying to see if there is a relationship between price-

earnings ratio (P/E) and a "time to buy" rating (TtB), has decided to see if he can do a good job of predicting P/E by 

using a regression of TtB and profits as a percent of net worth (per cent profit) on P/E. He collects a sample of (P/E,  

TtB, per cent profit) for 25 firms, and using a computer, estimates the function

P /E=a1TtB2 profit

He again uses the SAS program, and his computer printout gives him the results in Figure 3. This time he 

notices that there are two pages in the printout.
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The SAS System

Analysis of Variance

Source DF Sum of Squares Mean Square F Value R Sq

Model 2 374.779 187.389 2.724 0.192

Error 23 1582.235 58.72

Total 25 1957.015

The SAS System

Parameter Estimates

Variable DF
Parameter 

Estimate

Standard 

Error
t

Intercept 1 27.281 6.199 4.401

TtB 1 -3.772 1.627 -2.318

Profit 1 -0.012 0.279 -0.042

Exhibit 21: Cap's SAS computer printout

The equation the regression estimates is:

P/E = 27.281 - 3.772TtB – 0.012 Profit

Cap can now test three hypotheses. First, he can use the F-score to test to see if the regression model improves  

his ability to predict P/E. Second and third, he can use the t-scores to test to see if the slopes of TtB and Profit are 

different from zero.

To conduct the first test, Cap decides to choose an α = .10. The F-score is the regression or model mean square 

over the residual or error mean square, so the df for the F-statistic are first the df for the model and second the df  

for the error. There are 2,23 df for the F-test. According to his F-table, with 2.23 degrees of freedom, the critical F-

score for a = .10 is 2.55. His hypotheses are:

Ho: P/E ≠ f(Ttb,Profit)

Ha: P/E = f(Ttb, Profit)

Because the F-score from the regression, 2.724, is greater than the critical F-score, 2.55, Cap decides that the  

data supports H a : and concludes that the model helps him predict P/E. There is a functional relationship in the  

population.

Cap can also test to see if P/E depends on TtB and Profit individually by using the t-scores for the parameter 

estimates. There are (n-m-1)=23 degrees of freedom. There are two sets of hypotheses, one set for β1, the slope for 

TtB, and one set for β2, the slope for Profit. He expects that β1, the slope for TtB, will be negative, but he does not 
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have any reason to expect that β2 will be either negative or positive. Therefore, Cap will use a one-tail test on β1, and 

a two-tail test on β2 :

H a : 10 H a: 2=0

Since he has one one-tail test and one two-tail test, the t-values he chooses from the t-table will be different for  

the two tests. Using =.10 , Cap finds that his t-score for β1 the one-tail test, will have to be more negative than 

-1.32 before the data supports P/E being negatively dependent on TtB. He also finds that his t-score for β2 , the two-

tail test, will have to be outside ±1.71 to decide that P/E depends upon Profit. Looking back at his printout and 

checking the t-scores, Cap decides that Profit does not affect P/E, but that higher TtB ratings mean a lower P/E. 

Notice that the printout also gives a t-score for the intercept, so Cap could test to see if the intercept equals zero or  

not.

Though it is possible to do all of the computations with just a calculator, it is much easier, and more dependably  

accurate, to use a computer to find regression results. Many software packages are available, and most spreadsheet  

programs will find regression slopes. I left out the steps needed to calculate regression results without a computer 

on purpose, for you will never compute a regression without a computer (or a high end calculator) in all of your  

working years, and there is little most people can learn about how regression works from looking at the calculation 

method.

Correlation and covariance

The  correlation  between  two  variables  is  important  in  statistics,  and  it  is  commonly  reported.  What  is 

correlation? The meaning of correlation can be discovered by looking closely at the word—it is almost co-relation, 

and that is what it means: how two variables are co-related. Correlation is also closely related to regression. The  

covariance between two variables is also important in statistics, but it is seldom reported. Its meaning can also be 

discovered by looking closely at the word—it is co-variance, how two variables vary together. Covariance plays a 

behind-the-scenes  role  in  multivariate  statistics.  Though  you  will  not  see  covariance  reported  very  often, 

understanding it will help you understand multivariate statistics like understanding variance helps you understand 

univariate statistics.

There  are  two  ways  to  look  at  correlation.  The  first  flows  directly  from  regression  and  the  second  from 

covariance. Since you just learned about regression, it makes sense to start with that approach.

Correlation is measured with a number between -1 and +1 called the correlation coefficient. The population 

correlation coefficient is usually written as the Greek "rho",  , and the sample correlation coefficient as r. If you 

have a linear regression equation with only one explanatory variable, the sign of the correlation coefficient shows 

whether the slope of the regression line is positive or negative, while the absolute value of the coefficient shows how  

close to the regression line the points lie. If  is +.95, then the regression line has a positive slope and the points 

in the population are very close to the regression line. If r is -.13 then the regression line has a negative slope and  

the points in the sample are scattered far from the regression line. If you square r, you will get R 2, which is higher if 

the points in the sample lie very close to the regression line so that the sum of squares regression is close to the sum  

of squares total.
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The  other  approach  to  explaining  correlation  requires  understanding  covariance,  how  two  variables  vary  

together. Because covariance is a multivariate statistic  it  measures something about a sample or population of  

observations where each observation has two or more variables. Think of a population of (x,y) pairs. First find the 

mean of the x's and the mean of the y's,  x  and  y . Then for each observation, find x−x  y− y  . If 

the x and the y in this observation are both far above their means, then this number will be large and positive. If 

both are far below their means, it will also be large and positive. If you found ∑  x− x  y− y  , it would be 

large and positive if x and y move up and down together, so that large x's go with large y's, small x's go with small  

y's, and medium x's go with medium y's. However, if some of the large x's go with medium y's, etc. then the sum will  

be smaller, though probably still positive. A ∑  x− x y− y   implies that x's above x are generally paired 

with y's above  y , and those x's below their mean are generally paired with y's below their mean. As you can see,  

the sum is a measure of how x and y vary together. The more often similar x's are paired with similar y's, the more x  

and y vary together and the larger the sum and the covariance.

The term for a single observation, x− x  y− y  , will be negative when the x and y are on opposite sides 

of their means. If large x's are usually paired with small y's, and vice-versa, most of the terms will be negative and  

the sum will be negative. If the largest x's are paired with the smallest y's and the smallest x's with the largest y's,  

then many of the  x−x  y− y  will be large and negative and so will  the sum. A population with more 

members will have a larger sum simply because there are more terms to be added together, so you divide the sum 

by the number of observations to get the final measure, the covariance, or cov:

The maximum for the covariance is the product of the standard deviations of the x values and of the y values,  

σxσy . While proving that the maximum is exactly equal to the product of the standard deviations is complicated,  

you should be able to see that the more spread out the points are, the greater the covariance can be. By now you 

should understand that a larger standard deviation means that the points are more spread out,  so you should 

understand that a larger σx or a larger σy will allow for a greater covariance.

Sample covariance is  measured similarly,  except the sum is  divided by n-1 so that  sample covariance is  an 

unbiased estimator of population covariance:

samplecov=∑  x−x  y−y 
n−1

Correlation simply compares the covariance to the standard deviations of the two variables. Using the formula 

for population correlation:

= cov
x y

or = ∑  x− x y− y /N

∑  x− x
2 /N ∑  y− y

2/N

At its maximum, the absolute value of the covariance equals the product of the standard deviations, so at its 

maximum,  the absolute  value  of  r  will  be  1.  Since  the covariance  can  be  negative  or  positive  while  standard 

deviations are always positive, r can be either negative or positive. Putting these two facts together, you can see that  
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r will be between -1 and +1. The sign depends on the sign of the covariance and the absolute value depends on how  

close the covariance is to its maximum. The covariance rises as the relationship between x and y grows stronger, so 

a strong relationship between x and y will result in r having a value close to -1 or +1.

Covariance, correlation, and regression

Now it is time to think about how all of this fits together and to see how the two approaches to correlation are  

related. Start by assuming that you have a population of (x, y) which covers a wide range of y-values, but only a 

narrow range of x-values. This means that σy is large while σx is small. Assume that you graph the (x, y) points and 

find that they all lie in a narrow band stretched linearly from bottom left to top right, so that the largest y's are 

paired with the largest x's and the smallest y's with the smallest x's. This means both that the covariance is large 

and a good regression line that comes very close to almost all the points is easily drawn. The correlation coefficient  

will also be very high (close to +1). An example will show why all these happen together.

Imagine that the equation for the regression line is y=3+4x, μy = 31, and μx = 7, and the two points farthest to the 

top right, (10, 43) and (12, 51), lie exactly on the regression line. These two points together contribute ∑(x-μx)(y-μy) 

=(10-7)(43-31)+(12-7)(51-31)= 136 to the numerator of the covariance. If we switched the x's and y's of these two 

points, moving them off the regression line, so that they became (10, 51) and (12, 43), μx , μy, σx, and σy would remain 

the same, but these points would only contribute (10-7)(51-31)+(12-7)(43-31)= 120 to the numerator. As you can 

see, covariance is at its greatest, given the distributions of the x's and y's, when the (x, y) points lie on a straight line.  

Given that correlation, r, equals 1 when the covariance is maximized, you can see that r=+1 when the points lie  

exactly on a straight line (with a positive slope). The closer the points lie to a straight line, the closer the covariance 

is to its maximum, and the greater the correlation.

As this example shows, the closer the points lie to a straight line, the higher the correlation. Regression finds the  

straight line  that  comes as close  to the points  as  possible,  so it  should not  be  surprising that  correlation and  

regression are related. One of the ways the "goodness of fit" of a regression line can be measured is by R 2. For the 

simple two-variable case, R2 is simply the correlation coefficient, r, squared.

Exhibit 22: Plot of initial population

Correlation does not tell us anything about how steep or flat the regression line is, though it does tell us if the 

slope is positive or negative. If we took the initial population shown in Exhibit 20, and stretched it both left and 

right horizontally so that each point's x-value changed, but its y-value stayed the same, σx would grow while  σy 
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stayed the same.  If  you pulled  equally  to the right  and to  the left,  both  μx and  μy would stay  the same.  The 

covariance would certainly grow since the (x- μx ) that goes with each point would be larger absolutely while the (y-  

μy )'s would stay the same. The equation of the regression line would change, with the slope, b, becoming smaller,  

but the correlation coefficient would be the same because the points would be just as close to the regression line as  

before. Once again, notice that correlation tells you how well the line fits the points, but it does not tell you anything  

about the slope other than if it is positive or negative. If the points are stretched out horizontally, the slope changes 

but correlation does not. Also notice that though the covariance increases, correlation does not because σx increases 

causing the denominator in the equation for finding r to increase as much as covariance, the numerator.

The regression line and covariance approaches to understanding correlation are obviously related. If the points 

in the population lie very close to the regression line, the covariance will be large in absolute value since the x's that  

are far from their mean will be paired with y's which are far from theirs. A positive regression slope means that x 

and y rise and fall together, which also means that the covariance will be positive. A negative regression slope  

means that x and y move in opposite directions, which means a negative covariance.

Summary

Simple linear regression allows researchers  to estimate the parameters—the intercept and slopes—of linear 

equations connecting two or more variables. Knowing that a dependent variable is functionally related to one or 

more independent or explanatory variables, and having an estimate of the parameters of that function, greatly 

improves the ability of a researcher to predict the values the dependent variable will take under many conditions. 

Being able to estimate the effect that one independent variable has on the value of the dependent  variable in 

isolation from changes in other independent variables can be a powerful aid in decision making and policy design.  

Being able to test the existence of individual effects of a number of independent variables helps decision makers,  

researchers, and policy makers identify what variables are most important. Regression is a very powerful statistical  

tool in many ways.

The idea behind regression is simple, it is simply the equation of the line that "comes as close as possible to as  

many of the points as possible". The mathematics of regression are not so simple, however. Instead of trying to 

learn the math,  most researchers use computers to find regression equations,  so this  chapter stressed reading  

computer printouts rather than the mathematics of regression.

Two other topics,  which are  related to each other and to regression,  correlation and covariance,  were also  

covered.

Something as powerful as linear regression must have limitations and problems. In following chapters those 

limitations, and ways to overcome some of them, will be discussed. There is a whole subject, econometrics, which  

deals with identifying and overcoming the limitations and problems of regression. 
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