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2. The normal and t-
distributions

The normal distribution is simply a distribution with a certain shape. It is "normal" because many things have 

this same shape. The normal distribution is the “bell-shaped distribution” that describes how so many natural,  

machine-made, or human performance outcomes are distributed. If you ever took a class when you were "graded on  

a bell curve", the instructor was fitting the class' grades into a normal distribution—not a bad practice if the class is 

large and the tests are objective, since human performance in such situations is normally distributed. This chapter  

will discuss the normal distribution and then move onto a common sampling distribution, the t-distribution. The t-

distribution can be formed by taking many samples (strictly, all possible samples) of the same size from a normal  

population.  For each sample,  the same statistic,  called the t-statistic,  which we will  learn more about later,  is  

calculated. The relative frequency distribution of these t-statistics is the t-distribution. It turns out that t-statistics 

can be computed a number of different ways on samples drawn in a number of different situations and still have the  

same relative frequency distribution. This makes the t-distribution useful for making many different inferences, so 

it is one of the most important links between samples and populations used by statisticians. In between discussing 

the normal and t-distributions, we will discuss the central limit theorem. The t-distribution and the central limit  

theorem give us knowledge about the relationship between sample means and population means that allows us to  

make inferences about the population mean.

The way the t-distribution is used to make inferences about populations from samples is the model for many of 

the inferences  that  statisticians  make.  Since  you will  be  learning  to make  inferences  like  a  statistician,  try  to 

understand the general model of inference making as well as the specific cases presented. Briefly, the general model  

of inference-making is to use statisticians' knowledge of a sampling distribution like the t-distribution as a guide to 

the probable limits of where the sample lies relative to the population. Remember that the sample you are using to 

make an inference about the population is only one of many possible samples from the population. The samples will  

vary, some being highly representative of the population, most being fairly representative, and a few not being very  

representative at all. By assuming that the sample is at least fairly representative of the population, the sampling  

distribution can be used as a link between the sample and the population so you can make an inference about some 

characteristic of the population.

These ideas will be developed more later on. The immediate goal of this  chapter is to introduce you to the 

normal distribution, the central limit theorem, and the t-distribution.

Normal things

Normal  distributions are  bell-shaped and symmetric.  The mean,  median,  and mode are  equal.  Most  of  the 

members of a normally distributed population have values close to the mean—in a normal population 96 per cent of 

the members (much better than Chebyshev's 75 per cent), are within 2 σ of the mean.
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Statisticians  have  found  that  many  things  are  normally  distributed.  In  nature,  the  weights,  lengths,  and  

thicknesses of all sorts of plants and animals are normally distributed. In manufacturing, the diameter, weight,  

strength,  and many other characteristics  of  man- or  machine-made items are  normally  distributed.  In  human 

performance, scores on objective tests, the outcomes of many athletic exercises, and college student grade point 

averages are normally distributed. The normal distribution really is a normal occurrence.

If you are a skeptic, you are wondering how can GPAs and the exact diameter of holes drilled by some machine 

have the same distribution—they are not even measured with the same units. In order to see that so many things 

have the same normal shape, all must be measured in the same units (or have the units eliminated)—they must all 

be  "standardized."  Statisticians  standardize  many  measures  by  using  the  STANDARD  deviation.  All  normal 

distributions have the same shape because they all have the same relative frequency distribution when the values  

for their members are measured in standard deviations above or below the mean.

Using the United States customary system of measurement, if the weight of pet cats is normally distributed with 

a mean of 10.8 pounds and a standard deviation of 2.3 pounds and the daily sales at The First Brew Expresso Cafe 

are normally distributed with  μ=$341.46 and σ=$53.21, then the same proportion of pet cats weigh between 8.5 

pounds  (μ-1σ) and 10.8 pounds (μ) as the proportion of daily First Brew sales which lie between μ – 1σ ($288.25) 

and μ ($341.46). Any normally distributed population will have the same proportion of its members between the 

mean and one standard deviation below the mean. Converting the values of the members of a normal population so 

that each is now expressed in terms of standard deviations from the mean makes the populations all the same. This 

process is known as "standardization" and it makes all normal populations have the same location and shape.

This  standardization  process  is  accomplished  by  computing  a  "z-score"  for  every  member  of  the  normal 

population. The z-score is found by:

                                                          z =  (x - μ)/σ

This converts the original value, in its original units, into a standardized value in units of "standard deviations 

from the mean." Look at the formula. The numerator is simply the difference between the value of this member of  

the population, x, and the mean of the population  . It can be measured in centimeters, or points, or whatever. 

The denominator is the standard deviation of the population,   ,  and it is also measured in centimeters, or 

points,  or whatever.  If  the numerator is  15cm and the standard deviation is  10cm, then the z will  be 1.5.  This 

particular member of the population, one with a diameter 15cm greater than the mean diameter of the population,  

has a z-value of 1.5 because its value is 1.5 standard deviations greater than the mean. Because the mean of the x's is  

 , the mean of the z-scores is zero.

We could convert the value of every member of any  normal population into a z-score. If we did that for any 

normal population and arranged those z-scores into a relative frequency distribution, they would all be the same. 

Each and every one of those standardized normal distributions would have a mean of zero and the same shape. 

There are many tables which show what proportion of any normal population will have a z-score less than a certain  

value. Because the standard normal distribution is symmetric with a mean of zero, the same proportion of the 

population that is less than some positive z is also greater than the same negative z. Some values from a "standard  

normal" table appear below:

Proportion below .75 .90 .95 .975 .99 .995
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z-score 0.674 1.282 1.645 1.960 2.326 2.576

John McGrath has asked Kevin Schmidt "How much does a pair of size 11 mens dress socks usually weigh?" 

Kevin asks the people in quality control what they know about the weight of these socks and is told that the mean  

weight is 4.25 ounces with a standard deviation of .021 ounces. Kevin decides that Mr. McGrath probably wants 

more than the mean weight, and decides to give his boss the range of weights within which 95% of size 11 men's 

dress socks falls. Kevin sees that leaving 2.5% (.025 ) in the left tail and 2.5% (.025) in the right tail will leave 95%  

(.95) in the middle. He assumes that sock weights are normally distributed, a reasonable assumption for a machine-

made product, and consulting a standard normal table, sees that .975 of the members of any normal population  

have a z-score less than 1.96 and that .975 have a z-score greater than -1.96, so .95 have a z-score between ±1.96..

Now that he knows that 95% of the socks will have a weight with a z-score between ±1.96, Kevin can translate  

those z's into ounces. By solving the equation for both +1.96 and -1.96, he will find the boundaries of the interval 

within which 95% of the weights of the socks fall:

                                1.96 = (x - 4.25)/.021

solving for x, Kevin finds that the upper limit is 4.29 ounces. He then solves for z=-1.96:

                                      - 1.96 = (x -4.25)/ .021

and finds that the lower limit is 4.21 ounces. He can now go to John McGrath and tell him: "95% of size 11 mens'  

dress socks weigh between 4.21 and 4.29 ounces."

The central limit theorem

If this was a statistics course for math majors, you would probably have to prove this theorem. Because this text  

is designed for business and other non-math students, you will only have to learn to understand what the theorem 

says  and  why  it  is  important.  To  understand  what  it  says,  it  helps  to  understand  why  it  works.  Here  is  an  

explanation of why it works.

The  theorem  is  about  sampling  distributions  and  the  relationship  between  the  location  and  shape  of  a  

population and the location and shape of a sampling distribution generated from that population. Specifically, the  

central limit theorem explains the relationship between a population and the distribution of sample means found  

by taking all of the possible samples of a certain size from the original population, finding the mean of each sample, 

and arranging them into a distribution.

The sampling distribution of means is an easy concept. Assume that you have a population of x's. You take a 

sample of n of those x's and find the mean of that sample, giving you one x . Then take another sample of the 

same size, n, and find its x ...Do this over and over until you have chosen all possible samples of size n. You will 

have generated a new population, a population of  x 's. Arrange this population into a distribution, and you have 

the sampling distribution of means. You could find the sampling distribution of medians, or variances, or some 

other sample statistic by collecting all of the possible samples of some size, n, finding the median, variance, or other  

statistic about each sample, and arranging them into a distribution.

The central limit theorem is about the sampling distribution of means. It links the sampling distribution of x ’s 

with the original distribution of x's. It tells us that:
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(1) The mean of the sample means equals the mean of the original population, μx = μ. This is what makes x an 

unbiased estimator of μ.

(2) The distribution of  x ’s will be bell-shaped, no matter what the shape of the original distribution of x's.

 This makes sense when you stop and think about it. It means that only a small portion of the samples have  

means that are far from the population mean. For a sample to have a mean that is far from  x  , almost all of its 

members have to be from the right tail of the distribution of x's, or almost all have to be from the left tail. There are 

many more samples with most of their members from the middle of the distribution, or with some members from 

the right tail and  some from the left tail, and all of those samples will have an  x close to  x .   

(3a) The larger the samples, the closer the sampling distribution will be to normal, and

(3b) if the distribution of x's is normal, so is the distribution of  x ’ s.

These come from the same basic reasoning as 2), but would require a formal proof since "normal distribution" is  

a mathematical concept. It is not too hard to see that larger samples will generate a "more-bell-shaped" distribution  

of sample means than smaller samples, and that is what makes 3a) work.

(4) The variance of the  x ’s is equal to the variance of the x's divided by the sample size, or:

                                                 σ2
x  = σ2/ n

therefore the standard deviation of the sampling distribution is:

                                                    σx  =  σ / √n

While it is a difficult to see why this exact formula holds without going through a formal proof, the basic idea  

that larger samples yield sampling distributions with smaller standard deviations can be understood intuitively. If  

 x= x /n  then  xA . Furthermore, when the sample size, n, rises,  σ2
x  gets smaller. This is because it 

becomes more unusual to get a sample with an x that is far from   as n gets larger. The standard deviation 

of the sampling distribution includes an x−  for each, but remember that there are not many x 's that are as 

far from μ as there are x's that are far from μ, and as n grows there are fewer and fewer samples with an x  far from 

μ. This means that there are not many x−   that are as large as quite a few (x -μ) are.  By the time you square 

everything, the average x−2  is going to be much smaller that the average  (x – μ)2,  so,  x is going to be 

smaller than   x .  If the mean volume of soft drink in a population of 12 ounce cans is 12.05 ounces with a 

variance of .04 (and a standard deviation of .2), then the sampling distribution of means of samples of 9 cans will  

have a mean of 12.05 ounces and a variance of .04/9=.0044 (and a standard deviation of .2/3=.0667).

You can follow this same line of reasoning once again, and see that as the sample size gets larger, the variance  

and standard deviation of the sampling distribution will get smaller. Just remember that as sample size grows, 

samples with an x that is far from μ get rarer and rarer, so that the average x−2  will get smaller. The 

average x−2 is the variance. If larger samples of soft drink bottles are taken, say samples of 16, even fewer of 

the samples  will  have  means  that  are  very  far  from the mean of  12.05 ounces.  The variance  of  the sampling 

distribution when n=16 will therefore be smaller. According to what you have just learned, the variance will be  

only .04/16=.0025 (and the standard deviation will be .2/4=.05). The formula matches what logically is happening;  

as the samples get bigger, the probability of getting a sample with a mean that is far away from the population mean  
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gets smaller, so the sampling distribution of means gets narrower and the variance (and standard deviation) get 

smaller. In the formula, you divide the population variance by the sample size to get the sampling distribution  

variance. Since bigger samples means dividing by a bigger number, the variance falls as sample size rises. If you are  

using the sample mean as to infer the population mean, using a bigger sample will increase the probability that your  

inference is very close to correct because more of the sample means are very close to the population mean.. There is 

obviously a trade-off here. The reason you wanted to use statistics in the first place was to avoid having to go to the  

bother and expense of collecting lots of data, but if you collect more data, your statistics will probably be more  

accurate.

The t-distribution

The central limit theorem tells us about the relationship between the sampling distribution of means and the  

original population. Notice that if we want to know the variance of the sampling distribution we need to know the  

variance of the original population. You do not need to know the variance of the sampling distribution to make a  

point  estimate of  the mean,  but other,  more elaborate,  estimation techniques  require that  you either know or 

estimate the variance of the population. If you reflect for a moment, you will realize that it would be strange to 

know the variance of the population when you do not know the mean. Since you need to know the population mean 

to calculate the population variance and standard deviation, the only time when you would know the population 

variance without the population mean are examples and problems in textbooks. The usual case occurs when you 

have to estimate both the population variance and mean. Statisticians have figured out how to handle these cases by  

using the sample variance as an estimate of the population variance (and being able to use that to estimate the 

variance of the sampling distribution). Remember that s2  is an unbiased estimator of  2 . Remember, too, 

that  the  variance  of  the  sampling  distribution  of  means  is  related  to  the  variance  of  the  original  population  

according to the equation:

                                           σ2
x  = σ2/ n

so, the estimated standard deviation of a sampling distribution of means is:

                                          estimated  σx  =  s / √n

Following this thought, statisticians found that if they took samples of a constant size from a normal population,  

computed a statistic called a "t-score" for each sample, and put those into a relative frequency distribution, the 

distribution would be the same for samples of the same size drawn from any normal population. The shape of this  

sampling distribution of t's varies somewhat as sample size varies, but for any n it's always the same. For example,  

for samples of 5, 90% of the samples have t-scores between -1.943 and +1.943, while for samples of 15, 90% have t-

scores  between  ±  1.761.  The  bigger  the  samples,  the  narrower  the  range  of  scores  that  covers  any  particular  

proportion of the samples. That t-score is computed by the formula:

                                           t = (x  - μ) / (s/√n)

By comparing the formula for the t-score with the formula for the z-score, you will be able to see that the t is just 

an estimated z. Since there is one t-score for each sample, the t is just another sampling distribution. It turns out  

that there are other things that can be computed from a sample that have the same distribution as this t. Notice that 

we've used the sample standard deviation, s, in computing each t-score. Since we've used s, we've used up one  

degree of freedom. Because there are other useful sampling distributions that have this same shape, but use up 

various numbers of degrees of freedom, it is the usual practice to refer to the t-distribution not as the distribution  
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for  a  particular  sample size,  but as  the distribution for a particular  number of degrees  of  freedom. There are  

published tables showing the shapes of the t-distributions, and they are arranged by degrees of freedom so that they  

can be used in all situations.

Looking at the formula, you can see that the mean t-score will be zero since the mean x  equals   . Each 

t-distribution is symmetric, with half of the t-scores being positive and half negative because we know from the 

central  limit  theorem that  the sampling  distribution  of  means  is  normal,  and  therefore  symmetric,  when the 

original population is normal.

An excerpt  from a typical  t-table  is  printed  below. Note  that  there  is  one line each for  various degrees  of  

freedom. Across the top are the proportions of the distributions that will be left out in the tail--the amount shaded 

in the picture. The body of the table shows which t-score divides the bulk of the distribution of t's for that df from 

the area shaded in the tail, which t-score leaves that proportion of t's to its right. For example, if you chose all of the 

possible samples with 9 df, and found the t-score for each, .025 (2 1/2 %) of those samples would have t-scores 

greater than 2.262, and .975 would have t-scores less than 2.262.

df prob = .10 prob. = .05 prob. = .025 prob. = .01 prob. = .005

1 3.078 6.314 12.70 13.81 63.65

5 1.476 2.015 2.571 3.365 4.032

6 1.440 1.943 2.447 3.143 3.707

7 1.415 1.895 2.365 2.998 3.499

8 1.397 1.860 2.306 2.896 3.355

9 1.383 1.833 2.262 2.821 3.250

10 1.372 1.812 2.228 2.764 3.169

20 1.325 1.725 2.086 2.528 2.845

30 1.310 1.697 2.046 2.457 2.750

40 1.303 1.684 2.021 2.423 2.704

Infinity 1.282 1.645 1.960 2.326 2.58

Exhibit 3: A sampling of a student's t-table. The table shows the probability of exceeding the value in the body. 

With 5 df, there is a .05 probability that a sample will have a t-score > 2.015.

Since the t-distributions are symmetric, if 2 1/2% (.025) of the t's with 9df are greater than 2.262, then 2 1/2% 

are less than -2.262. The middle 95% (.95) of the t's, when there are 9df, are between -2.262 and +2.262. The  
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middle .90 of t=scores when there are 14df are between ±1.761, because -1.761 leaves .05 in the left tail and +1.761  

leaves .05 in the right tail. The t-distribution gets closer and closer to the normal distribution as the number of  

degrees of freedom rises. As a result, the last line in the t-table, for infinity df, can also be used to find the z-scores  

that leave different proportions of the sample in the tail.

What could Kevin have done if he had been asked "about how much does a pair of size 11 socks weigh?" and he  

could not easily find good data on the population? Since he knows statistics, he could take a sample and make an  

inference about the population mean. Because the distribution of weights of socks is the result of a manufacturing  

process,  it  is  almost  certainly normal.  The characteristics  of  almost  every  manufactured product  are  normally  

distributed. In a manufacturing process, even one that is precise and well-controlled, each individual piece varies 

slightly as the temperature varies some, the strength of the power varies as other machines are turned on and off,  

the consistency of the raw material varies slightly, and dozens of other forces that affect the final outcome vary  

slightly. Most of the socks, or bolts, or whatever is being manufactured, will be very close to the mean weight,or 

size, with just as many a little heavier or larger as there are that are a little lighter or smaller. Even though the  

process is supposed to be producing a population of "identical" items, there will be some variation among them. 

This is what causes so many populations to be normally distributed. Because the distribution of weights is normal, 

he can use the t-table to find the shape of the distribution of sample t-scores. Because he can use the t-table to tell  

him about the shape of the distribution of sample t-scores, he can make a good inference about the mean weight of  

a pair of socks. This is how he could make that inference:

STEP 1. Take a sample of n, say 15, pairs size 11 socks and carefully weigh each pair.

STEP 2. Find x  and s for his sample.

STEP 3 (where the tricky part starts). Look at the t-table, and find the t-scores that leave some proportion, 

say .95, of sample t's with n-1df in the middle.

STEP 4 (the heart of the tricky part). Assume that his sample has a t-score that is in the middle part of the 

distribution of t-scores.

STEP 5 (the arithmetic). Take his x  , s, n, and t's from the t-table, and set up two equations, one for 

each of his two table t-values. When he solves each of these equations for m, he will find a interval that he is  

95% sure (a statistician would say "with .95 confidence") contains the population mean.

Kevin decides this is the way he will go to answer the question. His sample contains pairs of socks with weights 

of :

4.36, 4.32, 4.29, 4.41, 4.45, 4.50, 4.36, 4.35, 4.33, 4.30, 4.39, 4.41, 4.43, 4.28, 4.46 oz.

He finds his sample mean, x  = 4.376 ounces, and his sample standard deviation (remembering to use the 

sample formula), s = .067 ounces. The t-table tells him that .95 of sample t's with 14df are between ±2.145. He  

solves these two equations for μ:

                  +2.145 =  (4.376 – μ)/(.067/√14)   and  -2.145 = (4.376 – μ)/(.067/√14) 

finding μ= 4.366 ounces and μ= 4.386. With these results, Kevin can report that he is "95 per cent sure that the 

mean weight of a pair of size 11 socks is between 4.366 and 4.386 ounces". Notice that this is different from when he  

knew more about the population in the previous example.
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Summary

A lot of material has been covered in this chapter, and not much of it has been easy. We are getting into real  

statistics now, and it will require care on your part if you are going to keep making sense of statistics.

The chapter outline is simple:

• Many things are distributed the same way, at least once we've standardized the members' values into z-scores.

• The  central  limit  theorem  gives  users  of  statistics  a  lot  of  useful  information  about  how  the  sampling 

distribution of  is related to the original population of x's.

• The t-distribution lets us do many of the things the central limit theorem permits, even when the variance of 

the population, sx , is not known.

We will soon see that statisticians have learned about other sampling distributions and how they can be used to  

make inferences  about  populations from samples.  It  is  through these known sampling distributions that  most 

statistics is done. It is these known sampling distributions that give us the link between the sample we have and the 

population that we want to make an inference about. 
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