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1. Descriptive statistics and 
frequency distributions

This chapter is about describing populations and samples, a subject known as descriptive statistics. This will all  

make more sense if you keep in mind that the information you want to produce is a description of the population or  

sample as a whole, not a description of one member of the population. The first topic in this chapter is a discussion 

of "distributions",  essentially pictures of populations (or samples). Second will be the discussion of descriptive  

statistics.  The topics are arranged in this order because the descriptive statistics can be thought of  as ways to 

describe the picture of a population, the distribution.

Distributions

The first step in turning data into information is to create a distribution. The most primitive way to present a 

distribution is to simply list, in one column, each value that occurs in the population and, in the next column, the  

number of times it occurs. It is customary to list the values from lowest to highest. This is simple listing is called a 

"frequency distribution". A more elegant way to turn data into information is to draw a graph of the distribution. 

Customarily, the values that occur are put along the horizontal axis and the frequency of the value is on the vertical  

axis.

Ann Howard called the equipment manager at two nearby colleges and found out the following data on sock 

sizes used by volleyball players. At Piedmont State last year, 14 pairs of size 7 socks, 18 pairs of size 8, 15 pairs of  

size 9, and 6 pairs of size 10 socks were used. At Graham College, the volleyball team used 3 pairs of size 6, 10 pairs  

of size 7, 15 pairs of size 8, 5 pairs of size 9, and 11 pairs of size 10. Ann arranged her data into a distribution and 

then drew a graph called a Histogram:

Exhibit 1: Frequency graph of sock sizes
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1. Descriptive statistics and frequency distributions

Ann could have created a relative frequency distribution as well as a frequency distribution. The difference is  

that instead of listing how many times each value occurred, Ann would list what proportion of her sample was made  

up of socks of each size:

Exhibit 2: Relative frequency graph of sock sizes

Notice that Ann has drawn the graphs differently. In the first graph, she has used bars for each value, while on  

the second, she has drawn a point for the relative frequency of each size, and the "connected the dots". While both  

methods are correct, when you have a values that are continuous, you will want to do something more like the 

"connect the dots" graph. Sock sizes are discrete, they only take on a limited number of values. Other things have 

continuous values, they can take on an infinite number of values, though we are often in the habit of rounding 

them off. An example is how much students weigh. While we usually give our weight in whole pounds in the US ("I 

weigh 156 pounds."), few have a weight that is exactly so many pounds. When you say "I weigh 156", you actually 

mean that you weigh between 155 1/2 and 156 1/2 pounds. We are heading toward a graph of a distribution of a  

continuous variable where the relative frequency of any exact value is very small, but the relative frequency of 

observations between two values is measurable. What we want to do is to get used to the idea that the total area 

under a "connect the dots" relative frequency graph, from the lowest to the highest possible value is one. Then the 

part of the area under the graph between two values is the relative frequency of observations with values within that 

range. The height of the line above any particular value has lost any direct meaning, because it is now the area  

under the line between two values that is the relative frequency of an observation between those two values 

occurring.

You can get some idea of how this works if you go back to the bar graph of the distribution of sock sizes, but  

draw it with relative frequency on the vertical axis. If you arbitrarily decide that each bar has a width of one, then 

the area "under the curve" between 7.5 and 8.5 is simply the height times the width of the bar for sock size 8: 0.3510  

x 1. If you wanted to find the relative frequency of sock sizes between 6.5 and 8.5, you could simply add together the  

area of the bar for size 7 (that's between 6.5 and 7.5) and the bar for size 8 (between 7.5 and 8.5).
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Descriptive statistics

Now that you see how a distribution is created, you are ready to learn how to describe one. There are two main 

things that need to be described about a distribution: its location and its shape. Generally, it is best to give a single 

measure as the description of the location and a single measure as the description of the shape.

Mean

To describe the location of a distribution, statisticians use a "typical" value from the distribution. There are a 

number of different ways to find the typical value, but by far the most used is the "arithmetic mean", usually simply  

called the "mean". You already know how to find the arithmetic mean, you are just used to calling it the "average".  

Statisticians use average more generally—the arithmetic mean is one of a number of different averages. Look at the 

formula for the arithmetic mean:

All you do is add up all of the members of the population, ∑x, and divide by how many members there are, N. 

The only trick is to remember that if there is more than one member of the population with a certain value, to add  

that value once for every member that has it. To reflect this, the equation for the mean sometimes is written :

where  f i is the frequency of members of the population with the value x i .

This is really the same formula as above. If there are seven members with a value of ten, the first formula would  

have you add seven ten times. The second formula simply has you multiply seven by ten—the same thing as adding 

together ten sevens.

Other  measures  of  location are  the median and the mode.  The median is  the value of  the member of the  

population that is in the middle when the members are sorted from smallest to largest. Half of the members of the  

population have values higher than the median, and half have values lower. The median is a better measure of 

location if there are one or two members of the population that are a lot larger (or a lot smaller) than all the rest.  

Such extreme values can make the mean a poor measure of location, while they have little effect on the median. If  

there are an odd number of members of the population, there is no problem finding which member has the median  

value. If there are an even number of members of the population, then there is no single member in the middle. In 

that case, just average together the values of the two members that share the middle.

The third common measure of location is the mode. If you have arranged the population into a frequency or  

relative frequency distribution, the mode is easy to find because it is the value that occurs most often. While in  

some sense, the mode is really the most typical member of the population, it is often not very near the middle of the 

population.  You can also have multiple modes.  I am sure you have heard someone say that "it was a bimodal 

distribution". That simply means that there were two modes, two values that occurred equally most often.

If you think about it, you should not be surprised to learn that for bell-shaped distributions, the mean, median,  

and mode will be equal. Most of what statisticians do with the describing or inferring the location of a population is  

done with the mean.  Another thing to think about  is  using a spreadsheet program,  like  Microsoft  Excel  when  

arranging  data  into  a  frequency  distribution  or  when  finding  the  median  or  mode.  By  using  the  sort  and 
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distribution commands in 1-2-3, or similar commands in Excel, data can quickly be arranged in order or placed into 

value  classes  and the number  in  each  class  found.  Excel  also  has  a  function,  =AVERAGE(...),  for  finding the 

arithmetic  mean.  You  can  also  have  the  spreadsheet  program  draw  your  frequency  or  relative  frequency 

distribution.

One of the reasons that the arithmetic mean is the most used measure of location is because the mean of a  

sample is an "unbiased estimator" of the population mean. Because the sample mean is an unbiased estimator of  

the population mean, the sample mean is a good way to make an inference about the population mean. If you have  

a sample from a population, and you want to guess what the mean of that population is, you can legitimately guess  

that the population mean is equal to the mean of your sample. This is a legitimate way to make this inference  

because the mean of all the sample means equals the mean of the population, so, if you used this method many 

times to infer the population mean, on average you'd be correct.

All of these measures of location can be found for samples as well as populations, using the same formulas.  

Generally,µ is used for a population mean, and x is is used for sample means. Upper-case N, really a Greek "nu", is  

used for the size of a population, while lower case n is used for sample size. Though it is not universal, statisticians  

tend to use the Greek alphabet for population characteristics and the Roman alphabet for sample characteristics.

Measuring population shape

Measuring the shape of a distribution is more difficult. Location has only one dimension ("where?"), but shape  

has a lot of dimensions. We will talk about two,and you will find that most of the time, only one dimension of shape 

is measured. The two dimensions of shape discussed here are the width and symmetry of the distribution. The  

simplest way to measure the width is to do just that—the range in the distance between the lowest and highest 

members of the population. The range is obviously affected by one or two population members which are much  

higher or lower than all the rest.

The most common measures of distribution width are the standard deviation and the variance. The standard 

deviation is simply the square root of the variance, so if you know one (and have a calculator that does squares and 

square roots) you know the other. The standard deviation is just a strange measure of the mean distance between 

the members of a population and the mean of the population. This is easiest to see if you start out by looking at the  

formula for the variance:

Look at the numerator. To find the variance, the first step (after you have the mean, µ) is to take each member of 

the population, and find the difference between its value and the mean; you should have N differences. Square each 

of those, and add them together, dividing the sum by N, the number of members of the population. Since you find  

the mean of a group of things by adding them together and then dividing by the number in the group, the variance 

is simply the "mean of the squared distances between members of the population and the population mean".

Notice that this is the formula for a population characteristic,  so we use the Greek  σ and that we write the 

variance as  σ2,  or "sigma square" because the standard deviation is  simply the square root of  the variance, its  

symbol is simply "sigma", σ.

One of the things statisticians have discovered is that 75 per cent of the members of any population are with two  

standard deviations  of  the mean of  the population.  This  is  known as  Chebyshev's  Theorem.  If  the mean of  a  

13



This book is licensed under a Creative Commons Attribution 3.0 License

population of shoe sizes is 9.6 and the standard deviation is 1.1, then 75 per cent of the shoe sizes are between 7.4  

(two standard deviations below the mean) and 11.8 (two standard deviations above the mean). This same theorem 

can be stated in probability terms: the probability that anything is within two standard deviations of the mean of its 

population is .75.

It is important to be careful when dealing with variances and standard deviations. In later chapters, there are  

formulas using the variance, and formulas using the standard deviation.  Be sure you know which one you are 

supposed to be using. Here again, spreadsheet programs will figure out the standard deviation for you. In Excel,  

there is a function, =STDEVP(...), that does all of the arithmetic. Most calculators will also compute the standard 

deviation. Read the little instruction booklet, and find out how to have your calculator do the numbers before you 

do any homework or have a test.

The other measure of shape we will discuss here is the measure of "skewness". Skewness is simply a measure of  

whether or not the distribution is symmetric or if it has a long tail on one side, but not the other. There are a  

number of ways to measure skewness, with many of the measures based on a formula much like the variance. The 

formula looks a lot like that for the variance, except the distances between the members and the population mean  

are cubed, rather than squared, before they are added together:

At  first  it  might  not  seem that  cubing rather  than  squaring  those  distances  would  make  much difference.  

Remember, however, that when you square either a positive or negative number you get a positive number, but that  

when you cube a positive, you get a positive and when you cube a negative you get a negative. Also remember that  

when you square a number, it gets larger, but that when you cube a number, it gets a whole lot larger. Think about a 

distribution with a long tail out to the left. There are a few members of that population much smaller than the  

mean, members for which x−  is large and negative. When these are cubed, you end up with some really big 

negative numbers. Because there are not any members with such large, positive  x− ,  there are not any 

corresponding really  big  positive  numbers  to  add in  when you sum up the  x−3 ,  and the sum will  be 

negative. A negative measure of skewness means that there is a tail out to the left, a positive measure means a tail to  

the right. Take a minute and convince yourself that if the distribution is symmetric, with equal tails on the left and  

right, the measure of skew is zero.

To be really complete, there is one more thing to measure, "kurtosis" or "peakedness". As you might expect by 

now, it is measured by taking the distances between the members and the mean and raising them to the fourth  

power before averaging them together.

Measuring sample shape

Measuring the  location  of  a  sample  is  done  in  exactly  the  way  that  the  location  of  a  population  is  done.  

Measuring the shape of a sample is done a little differently than measuring the shape of a population, however. The 

reason behind the difference is the desire to have the sample measurement serve as an unbiased estimator of the 

population measurement. If we took all of the possible samples of a certain size, n, from a population and found the 

variance of each one, and then found the mean of those sample variances, that mean would be a little smaller than  

the variance of the population.
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You  can  see  why  this  is  so  if  you  think  it  through.  If  you  knew  the  population  mean,  you  could  find  

∑ x−2 /n for each sample, and have an unbiased estimate for σ2. However, you do not know the population 

mean, so you will have to infer it. The best way to infer the population mean is to use the sample mean x . The 

variance of a sample will then be found by averaging together all of the ∑  x−x 
2/n .

The mean of a sample is obviously determined by where the members of that sample lie. If you have a sample 

that is mostly from the high (or right) side of a population's distribution, then the sample mean will almost for sure  

be greater than the population mean. For such a sample,  ∑ x−x 
2/n would underestimate σ2. The same is 

true for samples that are mostly from the low (or left) side of the population. If you think about what kind of  

samples will have ∑  x−x 
2/n that is greater than the population σ2, you will come to the realization that it is 

only those samples with a few very high members and a few very low members—and there are not very many 

samples like that. By now you should have convinced yourself that ∑ (x− x̄ )2 /n will result in a biased estimate 

of σ2. You can see that, on average, it is too small.

How can an unbiased estimate of the population variance,  σ2, be found? If  is ∑ (x− x̄ )2 /n on average too 

small,  we need to do something to make it a  little bigger.  We want to keep the  ∑(x-x)2,  but if  we divide it  by 

something a little smaller, the result will be a little larger. Statisticians have found out that the following way to  

compute the sample variance results in an unbiased estimator of the population variance:

If we took all of the possible samples of some size, n, from a population, and found the sample variance for each  

of those samples, using this formula, the mean of those sample variances would equal the population variance, σ2.

Note that we use s2 instead of σ2, and n instead of N (really "nu", not "en") since this is for a sample and we want  

to use the Roman letters rather than the Greek letters, which are used for populations.

There is  another  way to see why you divide by n-1.  We also have to address something called "degrees of  

freedom" before too long, and it is the degrees of freedom that is the key of the other explanation. As we go through 

this explanation, you should be able to see that the two explanations are related.

Imagine that you have a sample with 10 members (n=10), and you want to use it to estimate the variance of the  

population form which it was drawn. You write each of the 10 values on a separate scrap of paper. If you know the  

population mean, you could start by computing all 10 x−2 . In the usual case, you do not know μ , however, 

and you must start by finding x from the values on the 10 scraps to use as an estimate of m. Once you have found x , 

you could lose any one of the 10 scraps and still be able to find the value that was on the lost scrap from  and the 

other 9 scraps. If you are going to use x in the formula for sample variance, only 9 (or n-1), of the x's are free to take  

on any value. Because only n-1 of the x's can vary freely, you should divide ∑  x−x 
2 by n-1, the number of 

(x’s) that are really free. Once you use x in the formula for sample variance, you use up one "degree of freedom",  

leaving only n-1. Generally, whenever you use something you have previously computed from a sample within a  

formula, you use up a degree of freedom.
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A little thought will link the two explanations. The first explanation is based on the idea that x , the estimator of 

μ, varies with the sample. It is because x varies with the sample that a degree of freedom is used up in the second 

explanation.

The sample standard deviation is found simply by taking the square root of the sample variance:

s=√ [∑ x – x 2/ n−1]
While the sample variance is an unbiased estimator of population variance, the sample standard deviation is not 

an unbiased estimator of the population standard deviation—the square root of the average is not the same as the 

average of the square roots. This causes statisticians to use variance where it seems as though they are trying to get  

at standard deviation. In general, statisticians tend to use variance more than standard deviation. Be careful with 

formulas using sample variance and standard deviation in the following chapters. Make sure you are using the right 

one. Also note that many calculators will find standard deviation using both the population and sample formulas.  

Some use σ and s to show the difference between population and sample formulas, some use sn and sn-1 to show the 

difference.

If Ann Howard wanted to infer what the population distribution of volleyball players' sock sizes looked like she  

could do so from her sample. If she is going to send volleyball coaches packages of socks for the players to try, she 

will want to have the packages contain an assortment of sizes that will allow each player to have a pair that fits. Ann 

wants to infer what the distribution of volleyball players sock sizes looks like. She wants to know the mean and  

variance of that distribution. Her data, again, is:

size frequency

6 3

7 24

8 33

9 20

10 17

The mean sock size can be found:

=[(3x6)+(24x7)+(33x8)+(20x9)+(17x10)]/97 = 8.25.

To find the sample standard deviation, Ann decides to use Excel. She lists the sock sizes that were in the sample  

in column A, and the frequency of each of those sizes in column B. For column C, she has the computer findfor each 

of ∑ x−x 
2 the sock sizes, using the formula = (A1-8.25)^2 in the first row, and then copying it down to the  

other four rows. In D1, she multiplies C1, by the frequency using the formula =B1*C1, and copying it down into the 

other rows.  Finally,  she finds the sample standard deviation by adding up the five numbers in column D and  

dividing by n-1 = 96 using the Excel formula =sum(D1:D5)/96. The spreadsheet appears like this when she is done:

A B C D E

1 6 3 5.06 15.19
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2 7 24 1.56 37.5

3 8 33 0.06 2.06

4 9 20 0.56 11.25

5 10 17 3.06 52.06

6 n= 97 Var = 1.217139

7 Std.dev = 1.103.24

8

Ann now has an estimate of the variance of the sizes of socks worn by college volleyball players, 1.22. She has 

inferred that the population of college volleyball players' sock sizes has a mean of 8.25 and a variance of 1.22.

Summary

To describe a population you need to describe the picture or graph of its distribution. The two things that need  

to be described about the distribution are its location and its shape. Location is measured by an average, most often  

the arithmetic mean. The most important measure of shape is a measure of dispersion, roughly width, most often 

the variance or its square root the standard deviation.

Samples need to be described, too. If all we wanted to do with sample descriptions was describe the sample, we 

could use exactly the same measures for sample location and dispersion that are used for populations. We want to  

use the sample describers for dual purposes, however: (a) to describe the sample, and (b) to make inferences about 

the description of the population that sample came from. Because we want to use them to make inferences, we want 

our sample descriptions to be "unbiased estimators". Our desire to measure sample dispersion with an unbiased  

estimator  of  population  dispersion  means  that  the  formula  we  use  for  computing  sample  variance  is  a  little  

difference than the used for computing population variance.
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