Understanding Rational Exponents (Hsn.RN.A.1)

An exponent tells how many times a number called the base is used as a factor. A rational exponent is an exponent that is a fraction.

If your students...
Confuse bases and exponents:
Draw attention to the similarity between the words base and bottom. The base of a building or a statue is at the bottom. So, too, the base of an exponential expression is at the bottom:
base is at the bottom $\rightarrow 2^{5}$
Apply rules for raising an expression with an exponent to a power incorrectly:
Show why the rule for raising an expression with an exponent to a power makes sense.

$$
\begin{aligned}
& \left(2^{3}\right)^{4}=\left(\begin{array}{lll}
2 & 2 & 2
\end{array}\right)\left(\begin{array}{lll}
2 & 2 & 2
\end{array}\right)\left(\begin{array}{lll}
2 & 2 & 2
\end{array}\right)\left(\begin{array}{lll}
2 & 2 & 2
\end{array}\right) \quad 2^{3} \text { equals } 2 \quad 2 \quad 2 \\
& \begin{array}{lllllllllllll}
2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & \text { Remove parentheses. }
\end{array} \\
& =2^{12} \quad \text { There are twelve } 2 \text { 's in the product. } \\
& =2^{34} \quad 12=3 \quad 4
\end{aligned}
$$

Don't see the connection between roots and rational exponents with 1 in the numerator:

```
\(64^{\frac{1}{2}}=\) the square root of \(64=8\), because \(8 \quad 8=64\).
\(8^{\overline{3}}=\) the cube root of \(8=2\), because \(2 \quad 2 \quad 2=8\).
\(81^{\frac{1}{4}}=\) the fourth root of \(81=3\), because \(\begin{array}{lllll}3 & 3 & 3 & 3=81\end{array}\).
\(1024^{\frac{1}{5}}=\) the fifth root of \(1024=4\), because 4
\(64^{\frac{1}{6}}=\) the sixth root of \(64=2\), because \(\begin{array}{lllllll}2 & 2 & 2 & 2 & 2 & 2=64\end{array}\).
```

This additional resource will be of use to you; it is intended for teachers and provides additional context for presenting the material to students:
https://www.illustrativemathematics.org/content-standards/HSN/RN/A/1/tasks/385

