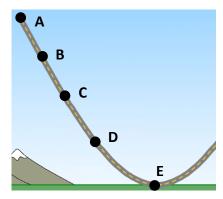

First Name:	Last Name:	Grade 5. Class	circle one	۱Δ۱	R C
1 11 3t Ivalite	Last Name.	_Uraue J. Class	circle one	<i>,</i> ~, '	<i>D,</i> C

Energy Skate Park Pre-Lab

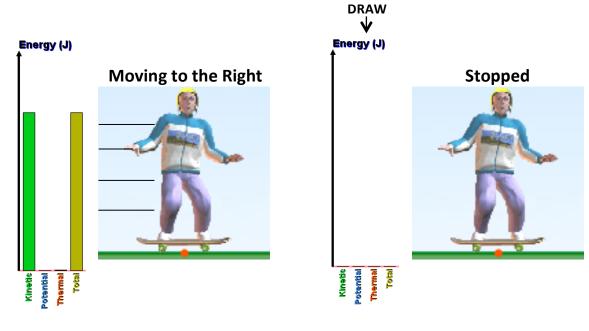
1. In the next moment, the <u>kinetic energy</u> of the skater gets <u>smaller</u>.


For each quantity, write whether it will be *increasing*, *decreasing*, or *staying the same*.

Explain your answer in the box on the right.

Quantity	Increasing/Decreasing/Same	Explain your answer
Height of the skater		
Potential energy of the skater		
Speed of the skater		

2. The bar graph shows the energy of the skater.


Where could the skater be on the track? _____

Explain your answer

Finetic Potential Thermal Total

3. The skater starts moving to the right and then slows to a stop.

On the right, draw what the Energy Chart will look like when the skater is stopped.

Explain your answer

4. Your friend plays soccer. Describe a situation in a soccer game where your friend would have:

High Kinetic Energy:		
Low Kinetic Energy:	 	

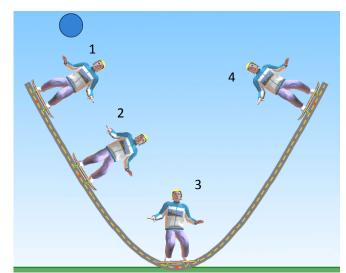
First Name:	Last Name:	_Grade 5. Class ((circle one) A,	в, с

Energy Skate Park

Learning Objectives

- Explain the relationship between total energy and kinetic, potential, and thermal energy
- Explain how changing track friction affects kinetic, potential, and thermal energy.
- Design a skate park using the concepts of mechanical energy and energy conservation.
- 1. Explore the simulation. Describe how the skater moves.
- 2. Describe how the skater's *height* is related to the skater's *speed* at different points on the track.
- 3. Go to the "Introduction" tab.

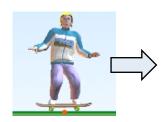
In the table below, write down whether each quantity *increases, decreases,* or *stays the same*.


Skater's Movement		Potential Energy	Kinetic Energy	Total Energy
Up the hill	The			
Down the hill	Ty.			

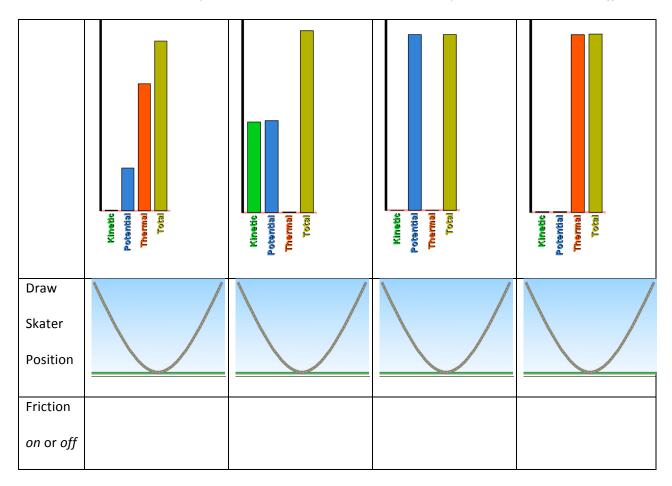
4. The picture shows the skater starting at the top of the ramp (position 1). <u>Draw</u> the pie chart for the skater at positions 2, 3, and 4.

Explain your reasoning for each point:
2:______

3:_____


4:_____

5. Go to the "Friction" tab.

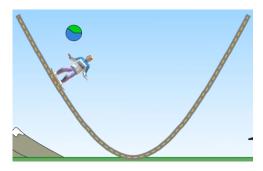

The skater is moving to the right along flat ground.

In the table below, write down whether each quantity is increasing, decreasing, or staying the same.

Track Friction	Potential Energy	Kinetic Energy	Thermal Energy	Total Energy
Zero				
Greater than Zero				

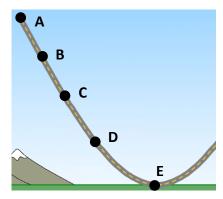
6. The skater is started at the <u>top of the track</u>. The table below shows *Energy Bar Charts* for the skater. In the table, draw where you think the skater is on the track, and if you think friction is *on* or *off*.

7. Design your own skate park! *Draw your skate park on another sheet of paper.*

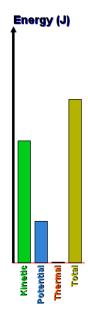

First Name:	Last Name:	Grade 5. Class	circle one) A. B	3. C

Energy Skate Park Post-Lab

1. In the next moment, the <u>kinetic energy</u> of the skater gets <u>smaller</u>.

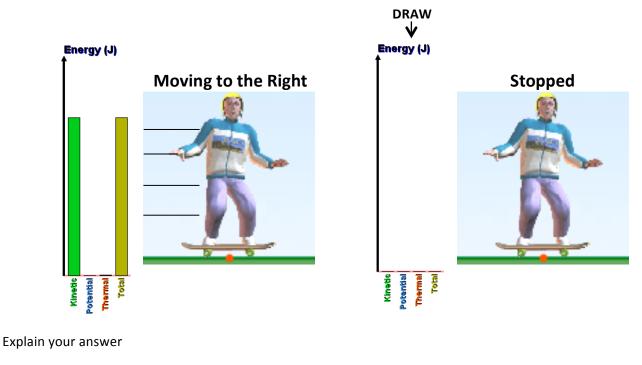

For each quantity, write whether it will be *increasing*, *decreasing*, or *staying the same*.

Explain your answer in the box on the right.


Quantity	Increasing/Decreasing/Same	Explain your answer
Height of the skater		
Potential energy of		
the skater		
Speed of the skater		
Speed of the skater		

2. The bar graph shows the energy of the skater.

Where could the skater be on the track? _____


Explain your answer

High Kinetic Energy:

3. The skater starts moving to the right and then slows to a stop.

On the right, draw what the Energy Chart will look like when the skater is stopped.

4. Your friend plays soccer. Describe a situation in a soccer game where your friend would have:

Low Kinetic Energy:

5. How useful for your learning was this science activity, compared to other science class activities? (circle)

More useful About the same Less useful

How *enjoyable* was this science class activity, compared to other science class activities? (circle)

More enjoyable About the same Less enjoyable

Why did you or did you not find it useful or enjoyable?