High School Algebra Playlist: Completing the Square to Write a Quadratic Expression in Vertex Form

Aligns with CCSS.Math.Content.HSA.SSE.B.3.b: Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.

Related Standards

- CCSS.Math.Content.HSA.SSE.A.2: Use the structure of an expression to identify ways to rewrite it. For example, see $x^{4}-y^{4}$ as $\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}$, thus recognizing it as a difference of squares that can be factored as $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.
- CCSS.Math.Content.HSA.SSE.B.3.a: Factor a quadratic expression to reveal the zeros of the function it defines.
- CCSS.Math.Content.HSA.REI.B.4: Solve quadratic equations in one variable.

Objectives

In this module, you will learn and practice the following skills:

- complete the square to convert a quadratic function in standard form to vertex form
- use the vertex form of a quadratic function to determine its minimum or maximum

Let's get started!

Key Terms

- The vertex of the graph of a parabola is the "tip" of the curve, where the graph of a quadratic function intersects its axis of symmetry.
- The vertex form of a quadratic function is $y=a(x-h)^{2}+k$, where (h, k) is the vertex.
- Completing the square is the process of converting an expression, such as a quadratic expression, into a perfect square by adding and subtracting a constant term.

Connections

- https://openstaxcollege.org/textbooks/algebra-and-trigonometry; section 2.5.3, about page 179
- https://openstaxcollege.org/textbooks/algebra-and-trigonometry; section 5.1.1, about page 477
- https://openstaxcollege.org/textbooks/algebra-and-trigonometry; section 5.1.2, about page 479

