High School Algebra Playlist: Defining Sequences as Functions

Aligns with CCSS.Math.Content.HSF.IF.A.3: Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by $f(0)=f(1)=1$, $f(n+1)=f(n)+f(n-1)$ for $n \geq 1$.

Related Standards

- CCSS.Math.Content.HSF.IF.A.1: Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$.
- CCSS.Math.Content.HSF.IF.A.2: Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.

Objectives

In this module, you will learn and practice the following skills:

- recognize that sequences can be defined using function notation
- apply a recursive function definition to find terms in a sequence

Let's get started!

Key Terms

- A function is a relation which has each input related to exactly one output.
- Function notation describes a function using its name and the independent variables.
- A sequence is an ordered list of numbers.
- An arithmetic sequence has a constant difference between terms.
- A geometric sequence has a constant ratio between terms.

Connections

- https://openstaxcollege.org/textbooks/algebra-and-trigonometry; section 13.1
- https://openstaxcollege.org/textbooks/algebra-and-trigonometry; section 3.1

Defining Sequences as Functions

(CCSS.Math.Content.HSF.IF.A.3)
A function is a relation which has each input related to exactly one output. Function notation describes a function using its name and the independent variables. A sequence is an ordered list of numbers. An arithmetic sequence has a constant difference between terms. A geometric sequence has a constant ratio between terms.

If your students...
Confuse arithmetic and geometric sequences:
Emphasize that the arithmetic sequence has a constant difference between terms, while the geometric sequence has a constant ratio.

WATCH: Represent a geometric sequence as an explicit rule
https://learnzillion.com/lesson plans/6796-represent-a-geometric-sequence-as-an-explicit-rule
WATCH: Represent an arithmetic sequence as an explicit rule
https://learnzillion.com/lesson plans/5556-represent-an-arithmetic-sequence-as-an-explicit-rule\#fndtn-lesson

Mishandle the first term:

Some students can determine how to "get" from one term in a sequence to the next, but they are not clear on what the initial term should be. The Fibonacci sequence provides a good example of needing to specify the "starting conditions".

WATCH: Exercise - Write a Fibonacci Function - Khan Academy
https://www.opened.com/video/exercise-write-a-fibonacci-function-khan-academy/39742

