\qquad
Acid and Base pH PhET Lab (rvsd 5/2011)
Investigating pH and acid and base concentration of common liquids

Introduction:

In this simulation, you will observe ions and changes in hydronium $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$and hydroxide $\left(\mathrm{OH}^{-}\right)$concentrations in several common substances. Remember, the autoionization constant of water K_{w} is \qquad and is equal to the product of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$. When the " \mathbf{p} " or negative logarithm is applied to each term, the relationship exists that $\mathbf{p H}+\mathbf{p O H}=\mathbf{1 4}$.

We can calculate a solution's pH using a logarithm, which determines a number's base-ten exponent. The " p " in pH is a negative logarithm (-log). We will investigate this in part II of the lab. In part III, we will determine the number of moles of hydronium present in solution, when concentration and volume is known. These are powerful tools that allow us to measure and determine analytically a solution's acid or basic properties.

Procedure: PhET Simulations \rightarrow Play With Sims \rightarrow Chemistry $\rightarrow p H$ Scale \rightarrow Run Now!

- When running the PhET sims, be sure to click the yellow drop-down bar to allow blocked content.
- Click on $\boldsymbol{H}_{3} \boldsymbol{O}^{+} / \mathbf{O H}$ ratio box to view the hydronium and hydroxide molecules as model dots in solution. \square Molecule count
$\boxed{+} \mathrm{H}_{3} \mathrm{O}^{+} / \mathrm{OH}^{-}$ratio - Spend a few minutes to become familiar with the simulation and its controls. - $\mathrm{H}_{3} \mathrm{O}^{+} / \mathrm{OH}^{-r}$ ratio

Part I: Changes in Hydronium $\mathrm{H}_{3} \mathrm{O}^{+}$and Hydroxide OH^{-}Concentrations

- Make sure you are viewing concentrations in $\mathrm{mol} / \mathrm{L}$.
- Move the pH slider to create custom liquids with varying pH . Observe how increasing the pH on the slider affects the pH and concentrations of hydronium $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and hydroxide $\left[\mathrm{OH}^{-}\right]$.

Part I Analysis

As pH increases, the concentration of hydronium $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ \qquad As pH increases, the concentration of hydroxide $\left[\mathrm{OH}^{-}\right]$ \qquad
For any substance, when I multiply $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$by $\left[\mathrm{OH}^{-}\right]$I always get \qquad
How does adding more or less a liquid change the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$?

Part III: Volume and Molarity

- Use
- You can toggle between concentration and number of moles with the button above.
- Observe the effect of changing volumes on the number of moles of $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}.
- Choose several of the sample liquids and observe their $\mathrm{H}_{3} \mathrm{O}^{+}$concentrations
- Find the number of moles of a few sample liquids by multiplying $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$by volume
- Complete the table below. Do the calculation for moles and check your work in the simulation by selecting "Number of moles (mol)"

Sample Liquid Used	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$Concentration [M]	Volume Used (L)	Number of Moles (mol)

Part III Analysis

The unit that is the product of concentration $(\mathrm{mol} / \mathrm{L})$ and volume (L) is \qquad .
How do your calculations for moles match the moles in the simulation? \qquad .

Conclusion Questions (GRADED, $1 / 2 \mathrm{pt}$ Each)

Math Review

1. Of 1.0×10^{-6} and 1.0×10^{-4}, the larger number is
2. \qquad .
3. The logarithm of $100\left(\right.$ aka $\left.10^{2}\right)$ is
4. \qquad .
5. The logarithm of .001 (aka 10^{-3}) is
6. \qquad .
7. The logarithm of 2.5×10^{-3} is
8. \qquad .
9. The solution to $1 \times 10^{-14} / 3.6 \times 10^{-8}$ is
10. \qquad .

Part I

6. Acids have \qquad pH while bases have \qquad pH .
7. pH is a logarithmic scale. This means that for a change of pH 3 to pH 2 , the hydronium ion concentration $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$changes by

8.	M
9.	M
10.	M
11.	M
12.	M
13.	M

8. Acids have a $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$that is greater than / less than (circle)
9. Bases have a $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$that is greater than / less than (circle)
10. The product of $\left[\mathrm{OH}^{-}\right]$and $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$for any solution is always
11. In neutral water both $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{+}\right]$equal
12. When $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2.3 \times 10^{-4}$, the $\left[\mathrm{OH}^{-}\right]$must equal
13. When $\left[\mathrm{OH}^{-}\right]=4.5 \times 10^{-9}$, the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$must equal
\qquad
Part II
14. Soda pop has a pH of 2.5 . What is soda's hydronium concentration $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$? 14 . M_.
15. What is soda's $\left[\mathrm{OH}^{-}\right]$?
16. \qquad
17. An unknown solution is found to have a $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of 3.8×10^{-5}. What is its pH ? 16 . \qquad .
18. What is the above solution's $\left[\mathrm{OH}^{-}\right]$?
19. \qquad M_.

Part III

18. How many moles of hydronium are present in 0.85 L of a $5.25 \times 10^{-5} \mathrm{M}$ solution? \qquad mol.
19. How much (volume) of .15 M NaOH would be required to have .60 moles of OH^{-}? \qquad L_.
20. If 250 mL of an unknown acid was found to contain .45 moles of H^{+}ions, what concentration was the unknown acid?
21. \qquad M_.
22. What volume of coffee $(\mathrm{pH}=5.0)$ would be required to have .25 moles of $\mathrm{H}_{3} \mathrm{O}^{+}$ions? (hint: two step)
