Acid and Base pH PhET Lab (rvsd 5/2011)

Investigating pH and acid and base concentration of common liquids

Introduction:

In this simulation, you will observe ions and changes in hydronium (H_3O^+) and hydroxide (OH^-) concentrations in several common substances. Remember, the autoionization constant of water K_w is ______ and is equal to the product of $[H_3O^+]$ and $[OH^-]$. When the "**p**" or negative logarithm is applied to each term, the relationship exists that **pH** + **pOH** = **14**.

We can calculate a solution's pH using a logarithm, which determines a number's base-ten

exponent. The "p" in pH is a negative logarithm (-log). We will investigate this in part II of the lab.

In part III, we will determine the number of moles of hydronium present in solution, when concentration and volume is known. These are powerful tools that allow us to measure and determine analytically a solution's acid or basic properties.

<u>Procedure</u>: PhET Simulations \rightarrow Play With Sims \rightarrow Chemistry \rightarrow pH Scale \rightarrow **Run Now!**

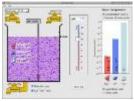
- When running the PhET sims, be sure to click the yellow drop-down bar to allow blocked content.
- Click on H_3O^+/OH^- ratio box to view the hydronium and hydroxide molecules as model dots in solution.
- Spend a few minutes to become familiar with the simulation and its controls.
- $\square H_3O^+/OH^-$ ratio Observe the pH of some common liquids.

<u>**Part I: Changes in Hydronium H**₃O⁺ and Hydroxide OH⁻ Concentrations</u>

- Make sure you are viewing concentrations in mol/L.
- Move the pH slider to create custom liquids with varying pH. Observe how increasing the pH on the slider affects the pH and concentrations of hydronium [H₃O⁺] and hydroxide [OH⁻].

<u>Part I Analysis</u>

As pH increases, the concentration of hydronium $[H_3O^+]$		
As pH increases, the concentration of hydroxide [OH ⁻]		
For any substance, when I multiply $[H_3O^+]$ by $[OH^-]$ I always get	H ₃ 0 ⁺	он⁻
How does adding more \mathbf{F}_{0} or less \mathbf{F}_{0} of a liquid change the $[\mathrm{H}_{3}\mathrm{O}^{+}]$?	Ū	


<u>Part II: pH – [H₃O⁺] Calculations</u>

- Choose several of the sample liquids and observe their H₃O⁺ concentrations
- Find the "pH" of a few sample liquids by taking the negative logarithm of the liquids H_3O^+ concentration
- Complete the table below

Sample Liquid Used	[H ₃ O ⁺] Concentration [M]	pH (-log [H ₃ O ⁺])

Part II Analysis

How do your calculations for pH match the pH identified in the simulation? ______ How does the pH change as $[H_3O^+]$ increases?

pH: 7.81

Name:

Concentration (mol/L)

O Number of moles (mol)

Part III: Volume and Molarity

Concentration (mol/L)

- Use and increase or decrease the volume of your liquids. ○ Number of moles (mol) •
- You can toggle between concentration and number of moles with the button above. •
- Observe the effect of changing volumes on the number of moles of H_3O^+ and OH^- . •
- Choose several of the sample liquids and observe their H₃O⁺ concentrations •
- Find the number of moles of a few sample liquids by multiplying $[H_3O^+]$ by volume •
- Complete the table below. Do the calculation for moles and check your work in the simulation by selecting • "Number of moles (mol)"

Sample Liquid Used	[H ₃ O ⁺] Concentration [M]	Volume Used (L)	Number of Moles (mol)
<u>Part III Analysis</u> The unit that is the product	t of appartration (mal/L) and	volume (L) is	
How do your calculations f	t of concentration (mol/L) and v for moles match the moles in the	e simulation?	·
	es are equal only when volume		
	es die equal only when volume		
Conclusion Questions ((GRADED, ½ pt Each)		
Math Review	-		
1. Of $1.0 \ge 10^{-6}$ and $1.0 \ge 10^{-6}$	10^{-4} , the larger number is	1	
2. The logarithm of 100 (2	
3. The logarithm of .001 (
4. The logarithm of 2.5 x			
5. The solution to 1×10^{-1}	1^{4} / 3.6 x 10 ⁻⁸ is	5	
Part I			
6. Acids have	pH while bases have	pH.	
7. pH is a logarithmic sca	le. This means that for a chang	e of pH 3 to pH 2, the hydror	nium ion concentration
[H ₃ O ⁺] changes by		7	
8. Acids have a $[H_3O^+]$ th	at is greater than / less than (ci		M
9. Bases have a $[H_3O^+]$ th	at is greater than / less than (ci	rcle) 9	M
	nd $[H_3O^+]$ for any solution is al	ways 10	M
11. In neutral water both [I		11	M
12. When $[H_3O^+] = 2.3 \times 1$		12	M
13. When $[OH^-] = 4.5 \times 10^{-1}$	$^{.9}$, the [H ₃ O ⁺] must equal	13	M
Part II			
14. Soda pop has a pH of 2	2.5. What is soda's hydronium	concentration $[H_3O^+]$? 14.	M
15. What is soda's $[OH^-]$?		15	M
16. An unknown solution i		$\mathbf{x} = 10^{-5}$ What is its nH? 16	
	s found to have a $[H_3O]$ of 3.8	x 10 . What is its pill 10	
17. What is the above solu			 M
Part III	tion's [OH ⁻]?	17	M
Part III 18. How many moles of hy	tion's [OH ⁻]? ydronium are present in 0.85 L o	17 of a 5.25 x 10 ⁻⁵ M solution? _	M mol
19. How much (volume) of	tion's [OH ⁻]? /dronium are present in 0.85 L o f .15 M NaOH would be require	$17. _$ of a 5.25 x 10^{-5} M solution? _ ed to have .60 moles of OH ⁻ ?	M mol L
Part III 18. How many moles of hy 19. How much (volume) of	tion's [OH ⁻]? ydronium are present in 0.85 L o	$17. _$ of a 5.25 x 10^{-5} M solution? _ ed to have .60 moles of OH ⁻ ?	M mol L
Part III18. How many moles of hy19. How much (volume) o20. If 250 mL of an unknown acid?	tion's [OH ⁻]? ydronium are present in 0.85 L o f .15 M NaOH would be require wn acid was found to contain .4	17 of a 5.25 x 10^{-5} M solution? _ ed to have .60 moles of OH ⁻ ? 15 moles of H ⁺ ions, what cor 20	M mol L ncentration was the unknow. M
 Part III 18. How many moles of hy 19. How much (volume) of 20. If 250 mL of an unknown acid? 	tion's [OH ⁻]? /dronium are present in 0.85 L o f .15 M NaOH would be require	17 of a 5.25 x 10^{-5} M solution? _ ed to have .60 moles of OH ⁻ ? 15 moles of H ⁺ ions, what cor 20	M mol L ncentration was the unknow M

March and CM als < 1)