1. Select "Balance Lab" from the top menu. Place 20 kg of bricks at 1 meter. Balance the beam with 10 kg of bricks. What is the location of 10 kg pack?
C 0.25 m
C 1.0 m
C 1.5 m
(. 2.0 m
C 2.5 m
2. Place 20 kg pack at 0.75 m . Place 10 kg pack to balance the beam. What is the location of 10 kg pack?

C 0.5 m
C 0.75 m
(. 1.5 m
C 2.0 m
3. Multiply the mass of one pack by a distance from the pivot point (kg x m). What is the product? This is a measurement of a torque, or a force exerted by applying certain amount of force at a given distance from the pivot point.

C 7.5
C 10
(c) 15

C 20
C 30
4. Place 20 kg pack at 1 meter. Place 10 kg pack on the other side, also at 1 meter. Place 5 kg pack on the same side as 10 kg pack to balance the beam. What is the location of 5 kg pack?

C 0.5 m
C 0.75
C 1.5 m
(c) 2.0 m

C 2.5 m
5. Multiply the mass of objects on one side of the beam by their distance from the pivot point. What is the product?

C 10
C 15

C 30
6. Place 10 kg pack at 1.5 meter. Place two 20 kg packs on the opposite side to balance the beam. Take a screen shot of the balanced beam and put it in PowerPoint. What are the locations of 20 kg packs? \qquad m and \qquad m.
(c) $0.5,0.25$

C $0.5,0.75$
C $0.5,1.25$
C $1.5,0.25$
7. Multiply the mass of objects on one side by their distances from the pivot point. What is the product?

C 5
C 10
(c) 15

C 20
C 25
8. From the menu select "People" and place a boy and a man on one side, and a girl and a woman on another side. What is the combined mass on each side? \qquad kg and \qquad kg.

C $80 ; 90$
C $80 ; 100$
($90 ; 100$
C $120 ; 90$
9. Place a mystery object A at 1 meter. Use 10 kg brick pack to balance the beam. What is the position of 10 kg pack?
C 0.5 m
C 1.0 m
C $\quad 1.5 \mathrm{~m}$
© 2.0 m
C 2.5 m
10. You should have 10 kg pack at 2 meters. From this, you can figure the mass of the mystery object. $10 \mathrm{~kg} \times 2 \mathrm{~m}=20$. Object A mass x $1 \mathrm{~m}=20$, so the mass has to be 20 kg . Confirm it by moving object A to a position of 1 m . Move 10 kg pack to balance the beam. What is the new position of 10 kg pack?

C 0.5 m
C 0.75 m
(c 1.0 m
C 1.5 m
C 2.0 m
11. Place a mystery object B on the beam at 1 meter, and balance it with 10 kg brick pack. What is the mass of the object B ?

C 1 kg
C 2 kg
(5 kg
C $\quad 7.5 \mathrm{~kg}$
C 10 kg
12. Clear the beam of objects. Place a mystery object C on the beam at 1 meter. Balance it with 10 kg brick pack. What is the location of the brick pack?

C 0.75 m
C $\quad 1.0 \mathrm{~m}$
© 1.5 m
C 2.0
C 3.0 m
13. Place an object C at 1 meter, and balance it with 20 kg brick pack. What is the location of 20 kg pack?

C 0.5 m
c 0.75 m
C 1.0 m
C 1.5 m
C
14. Place an object D at 1.5 meter, and balance it with 20 kg brick pack. What is the location of the pack?

C 0.5 m
(6 0.75 m
C 1.0 m

C $\quad 1.25 \mathrm{~m}$
C 1.5 m
15. Place object A at 2 meters, object B at 1.75 meters, object C at 1.5 meters, and object D at 1.25 meters. Place 20 kg brick pack on the other side at 2 meters, and another 20 kg brick pack at 1.75 meters. Now, balance the beam with two more packs, each 5 kg (so you have 2 packs of 20 kg and 2 packs of 5 kg on one side.) Place one 5 kg pack at 0.25 meter and balance the beam by placing another 5 kg pack as needed. What is the position of this last 5 kg pack?

C 0.5 m
C 0.75 m
C 1.0 m
(1.5 m
C 2.0 m

